在Python
中,装饰器一般用来修饰函数,实现公共功能,达到代码复用的目的。在函数定义前加上@xxxx
,然后函数就注入了某些行为,很神奇!然而,这只是语法糖而已。
原文地址:
微信公众号:小菜学编程 (coding-fan)
场景
假设,有一些工作函数,用来对数据做不同的处理:
def work_bar(data): passdef work_foo(data): pass复制代码
我们想在函数调用前/后输出日志,怎么办?
傻瓜解法
logging.info('begin call work_bar')work_bar(1)logging.info('call work_bar done')复制代码
如果有多处代码调用呢?想想就怕!
函数包装
傻瓜解法无非是有太多代码冗余,每次函数调用都要写一遍logging
。可以把这部分冗余逻辑封装到一个新函数里:
def smart_work_bar(data): logging.info('begin call: work_bar') work_bar(data) logging.info('call doen: work_bar')复制代码
这样,每次调用smart_work_bar
即可:
smart_work_bar(1)# ...smart_work_bar(some_data)复制代码
通用闭包
看上去挺完美……然而,当work_foo
也有同样的需要时,还要再实现一遍smart_work_foo
吗?这样显然不科学呀!
别急,我们可以用闭包:
def log_call(func): def proxy(*args, **kwargs): logging.info('begin call: {name}'.format(name=func.func_name)) result = func(*args, **kwargs) logging.info('call done: {name}'.format(name=func.func_name)) return result return proxy复制代码
这个函数接收一个函数对象(被代理函数)作为参数,返回一个代理函数。调用代理函数时,先输出日志,然后调用被代理函数,调用完成后再输出日志,最后返回调用结果。这样,不就达到通用化的目的了吗?——对于任意被代理函数func
,log_call
均可轻松应对。
smart_work_bar = log_call(work_bar)smart_work_foo = log_call(work_foo)smart_work_bar(1)smart_work_foo(1)# ...smart_work_bar(some_data)smart_work_foo(some_data)复制代码
第1
行中,log_call
接收参数work_bar
,返回一个代理函数proxy
,并赋给smart_work_bar
。第4
行中,调用smart_work_bar
,也就是代理函数proxy
,先输出日志,然后调用func
也就是work_bar
,最后再输出日志。注意到,代理函数中,func
与传进去的work_bar
对象紧紧关联在一起了,这就是闭包。
再提一下,可以覆盖被代理函数名,以smart_
为前缀取新名字还是显得有些累赘:
work_bar = log_call(work_bar)work_foo = log_call(work_foo)work_bar(1)work_foo(1)复制代码
语法糖
先来看看以下代码:
def work_bar(data): passwork_bar = log_call(work_bar)def work_foo(data): passwork_foo = log_call(work_foo)复制代码
虽然代码没有什么冗余了,但是看是去还是不够直观。这时候,语法糖来了~~~
@log_calldef work_bar(data): pass复制代码
因此,注意一点(划重点啦),这里@log_call
的作用只是:告诉Python
编译器插入代码work_bar = log_call(work_bar)
。
求值装饰器
先来猜猜装饰器eval_now
有什么作用?
def eval_now(func): return func()复制代码
看上去好奇怪哦,没有定义代理函数,算装饰器吗?
@eval_nowdef foo(): return 1print foo复制代码
这段代码输出1
,也就是对函数进行调用求值。那么到底有什么用呢?直接写foo = 1
不行么?在这个简单的例子,这么写当然可以啦。来看一个更复杂的例子——初始化一个日志对象:
# some other code before...# log formatformatter = logging.Formatter( '[%(asctime)s] %(process)5d %(levelname) 8s - %(message)s', '%Y-%m-%d %H:%M:%S',)# stdout handlerstdout_handler = logging.StreamHandler(sys.stdout)stdout_handler.setFormatter(formatter)stdout_handler.setLevel(logging.DEBUG)# stderr handlerstderr_handler = logging.StreamHandler(sys.stderr)stderr_handler.setFormatter(formatter)stderr_handler.setLevel(logging.ERROR)# logger objectlogger = logging.Logger(__name__)logger.setLevel(logging.DEBUG)logger.addHandler(stdout_handler)logger.addHandler(stderr_handler)# again some other code after...复制代码
用eval_now
的方式:
# some other code before...@eval_nowdef logger(): # log format formatter = logging.Formatter( '[%(asctime)s] %(process)5d %(levelname) 8s - %(message)s', '%Y-%m-%d %H:%M:%S', ) # stdout handler stdout_handler = logging.StreamHandler(sys.stdout) stdout_handler.setFormatter(formatter) stdout_handler.setLevel(logging.DEBUG) # stderr handler stderr_handler = logging.StreamHandler(sys.stderr) stderr_handler.setFormatter(formatter) stderr_handler.setLevel(logging.ERROR) # logger object logger = logging.Logger(__name__) logger.setLevel(logging.DEBUG) logger.addHandler(stdout_handler) logger.addHandler(stderr_handler) return logger# again some other code after...复制代码
两段代码要达到的目的是一样的,但是后者显然更清晰,颇有代码块的风范。更重要的是,函数调用在局部名字空间完成初始化,避免临时变量(如formatter
等)污染外部的名字空间(比如全局)。
带参数装饰器
定义一个装饰器,用于记录慢函数调用:
def log_slow_call(func): def proxy(*args, **kwargs): start_ts = time.time() result = func(*args, **kwargs) end_ts = time.time() seconds = start_ts - end_ts if seconds > 1: logging.warn('slow call: {name} in {seconds}s'.format( name=func.func_name, seconds=seconds, )) return result return proxy复制代码
第3
、5
行分别在函数调用前后采样当前时间,第7
行计算调用耗时,耗时大于一秒输出一条警告日志。
@log_slow_calldef sleep_seconds(seconds): time.sleep(seconds)sleep_seconds(0.1) # 没有日志输出sleep_seconds(2) # 输出警告日志复制代码
然而,阈值设置总是要视情况决定,不同的函数可能会设置不同的值。如果阈值有办法参数化就好了:
def log_slow_call(func, threshold=1): def proxy(*args, **kwargs): start_ts = time.time() result = func(*args, **kwargs) end_ts = time.time() seconds = start_ts - end_ts if seconds > threshold: logging.warn('slow call: {name} in {seconds}s'.format( name=func.func_name, seconds=seconds, )) return result return proxy复制代码
然而,@xxxx
语法糖总是以被装饰函数为参数调用装饰器,也就是说没有机会传递threshold
参数。怎么办呢?——用一个闭包封装threshold
参数:
def log_slow_call(threshold=1): def decorator(func): def proxy(*args, **kwargs): start_ts = time.time() result = func(*args, **kwargs) end_ts = time.time() seconds = start_ts - end_ts if seconds > threshold: logging.warn('slow call: {name} in {seconds}s'.format( name=func.func_name, seconds=seconds, )) return result return proxy return decorator@log_slow_call(threshold=0.5)def sleep_seconds(seconds): time.sleep(seconds)复制代码
这样,log_slow_call(threshold=0.5)
调用返回函数decorator
,函数拥有闭包变量threshold
,值为0.5
。decorator
再装饰sleep_seconds
。
采用默认阈值,函数调用还是不能省略:
@log_slow_call()def sleep_seconds(seconds): time.sleep(seconds)复制代码
处女座可能会对第一行这对括号感到不爽,那么可以这样改进:
def log_slow_call(func=None, threshold=1): def decorator(func): def proxy(*args, **kwargs): start_ts = time.time() result = func(*args, **kwargs) end_ts = time.time() seconds = start_ts - end_ts if seconds > threshold: logging.warn('slow call: {name} in {seconds}s'.format( name=func.func_name, seconds=seconds, )) return result return proxy if func is None: return decorator else: return decorator(func)复制代码
这种写法兼容两种不同的用法,用法A
默认阈值(无调用);用法B
自定义阈值(有调用)。
# Case A@log_slow_calldef sleep_seconds(seconds): time.sleep(seconds)# Case B@log_slow_call(threshold=0.5)def sleep_seconds(seconds): time.sleep(seconds)复制代码
用法A
中,发生的事情是log_slow_call(sleep_seconds)
,也就是func
参数是非空的,这是直接调decorator
进行包装并返回(阈值是默认的)。
用法B
中,先发生的是log_slow_call(threshold=0.5)
,func
参数为空,直接返回新的装饰器decorator
,关联闭包变量threshold
,值为0.5
;然后,decorator
再装饰函数sleep_seconds
,即decorator(sleep_seconds)
。注意到,此时threshold
关联的值是0.5
,完成定制化。
你可能注意到了,这里最好使用关键字参数这种调用方式——使用位置参数会很丑陋:
# Case B-@log_slow_call(None, 0.5)def sleep_seconds(seconds): time.sleep(seconds)复制代码
当然了,函数调用尽量使用关键字参数是一种极佳实践,含义清晰,在参数很多的情况下更是如此。
智能装饰器
上节介绍的写法,嵌套层次较多,如果每个类似的装饰器都用这种方法实现,还是比较费劲的(脑子不够用),也比较容易出错。
假设有一个智能装饰器smart_decorator
,修饰装饰器log_slow_call
,便可获得同样的能力。这样,log_slow_call
定义将变得更清晰,实现起来也更省力啦:
@smart_decoratordef log_slow_call(func, threshold=1): def proxy(*args, **kwargs): start_ts = time.time() result = func(*args, **kwargs) end_ts = time.time() seconds = start_ts - end_ts if seconds > threshold: logging.warn('slow call: {name} in {seconds}s'.format( name=func.func_name, seconds=seconds, )) return result return proxy复制代码
脑洞开完,smart_decorator
如何实现呢?其实也简单:
def smart_decorator(decorator): def decorator_proxy(func=None, **kwargs): if func is not None: return decorator(func=func, **kwargs) def decorator_proxy(func): return decorator(func=func, **kwargs) return decorator_proxy return decorator_proxy复制代码
smart_decorator
实现了以后,设想就成立了!这时,log_slow_call
,就是decorator_proxy
(外层),关联的闭包变量decorator
是本节最开始定义的log_slow_call
(为了避免歧义,称为real_log_slow_call
)。log_slow_call
支持以下各种用法:
# Case A@log_slow_calldef sleep_seconds(seconds): time.sleep(seconds)复制代码
用法A
中,执行的是decorator_proxy(sleep_seconds)
(外层),func
非空,kwargs
为空;直接执行decorator(func=func, **kwargs)
,即real_log_slow_call(sleep_seconds)
,结果是关联默认参数的proxy
。
# Case B# Same to Case A@log_slow_call()def sleep_seconds(seconds): time.sleep(seconds)复制代码
用法B
中,先执行decorator_proxy()
,func
及kwargs
均为空,返回decorator_proxy
对象(内层);再执行decorator_proxy(sleep_seconds)
(内层);最后执行decorator(func, **kwargs)
,等价于real_log_slow_call(sleep_seconds)
,效果与用法A
一致。
# Case C@log_slow_call(threshold=0.5)def sleep_seconds(seconds): time.sleep(seconds)复制代码
用法C
中,先执行decorator_proxy(threshold=0.5)
,func
为空但kwargs
非空,返回decorator_proxy
对象(内层);再执行decorator_proxy(sleep_seconds)
(内层);最后执行decorator(sleep_seconds, **kwargs)
,等价于real_log_slow_call(sleep_seconds, threshold=0.5)
,阈值实现自定义!
订阅更新,获取更多学习资料,请关注我们的 :